
The ACCEPT Post-Editing Environment: a Flexible and Customisable
Online Tool to Perform and Analyse Machine Translation Post-Editing

Johann Roturier, Linda Mitchell, David Silva
Symantec Ltd.

Ballycoolin Business Park
Blanchardstown, Dublin 15

Ireland
{johann roturier,linda mitchell,david silva}@symantec.com

Abstract

This paper presents an online environment
aimed at community post-editing, which
can record and store any post-editing ac-
tion performed on machine translated con-
tent. This environment can then be used to
generate reports using the standard XLIFF
format with a view to provide stakehold-
ers such as machine translation providers,
content developers and online commu-
nity managers with detailed information on
post-editing actions. This paper presents in
detail the functionality available within the
environment as well as the design choices
that were made when creating this environ-
ment. Preliminary usability feedback re-
ceived to date suggests that the feature set
is sufficient to perform community post-
editing.

1 Introduction

Machine translation (MT) systems are increasingly
used to produce rough translated versions of docu-
ments that may be reviewed and possibly modified
by post-editors in order to produce improved ver-
sions. For instance, Dell and Welocalize recently
announced an MT-based localisation program for
the translation of Web content using 27 MT en-
gines.1 Thanks to this deployment, machine-
translated documents (such as technical support ar-
ticles) are made available to end-users who may
glean useful information if their knowledge of the
source language is not sufficient and if the quality
1http://www.welocalize.com/dell-
welocalize-the-biggest-machine-
translation-program-ever/

of the MT output is sufficient. In some cases, how-
ever, previous studies have shown that the quality
of MT output may not be sufficient for the output
to be found comprehensible by end-users (Roturier
and Bensadoun, 2011), especially when the source
text is uncontrolled (Mitchell and Roturier, 2012).
This is especially true when source content is user-
generated, which is why the ACCEPT project aims
at developing new technologies designed specifi-
cally to help MT work better in an online commu-
nity environment.2

Publishing documents that are difficult or im-
possible to understand defeats the purpose of pub-
lishing documents in the first place, so post-editing
these documents before (or just after) they have
been published is often considered as an important
step in document localisation production work-
flows (Flournoy and Duran, 2009). Providing post-
editors with the right environment to perform this
activity has received a lot of attention lately since
post-editing is a very different task from transla-
tion. This paper, which presents an online en-
vironment aimed at community post-editing, is
divided as follows: Section 2 reviews existing
post-editing environments by highlighting missing
functionality from a community perspective. Sec-
tion 3 presents the choices that were made when
designing the ACCEPT environment and Section
4 describes its various functionality. Section 5
presents the results of a small evaluation study con-
ducted with the help of an online survey, seeking to
elicit feedback from users of the environment. Fi-
nally conclusions and suggestions for future work
are presented in Section 6.

2http://www.accept-project.eu/

Sharon O’Brien, Michel Simard and Lucia Specia (eds.)
Proceedings of MT Summit XIV Workshop on Post-editing Technology and Practice, Nice, September 2, 2013, p. 119–128.
c©2013 The Authors. This article is licensed under a Creative Commons 3.0 licence, no derivative works, attribution,

CC-BY-ND.

2 Related work

MT technology is increasingly used by Language
Service Providers (LSP), as revealed by a 2009
TAUS market survey, which showed that 40% of
the surveyed LSPs already used MT, with a ma-
jority of the remaining 60% indicating that they
were considering an MT integration in their pro-
cesses in the next two years.3 The reasons for
the increase in MT technology adoption are var-
ied. One obvious reason concerns the productiv-
ity gains in the translation industry reported by
several studies, such as Plitt and Masselot (2010),
de Almeida and O’Brien (2010), Guerberof Are-
nas (2012) and (Green et al., 2013). Another rea-
son is related to the increasing ubiquity of ma-
chine translation tools (such as Google Translate)
and the proliferation of tools providing an envi-
ronment where machine-translated text can be im-
proved. Such environments include desktop-based
standalone tools, web-based generic environments
and web-based dedicated environments.

Desktop-based tools include generic computer-
aided tools (CAT) or translation environment tools
(TenT) that have been enhanced to support the
post-editing of machine-translated content. Such
tools tend to be aimed at professional translators,
rather than community users, so they will not be
reviewed any further. Dedicated standalone post-
editing tools aim at studying the work of post-
editors, for example by recording post-editing ac-
tions thanks to keylogging or eye-tracking soft-
ware. Examples of such tools include Translog II
(Carl, 2012), PET (Aziz et al., 2012) or iOmegaT 4.
Our work differs from these standalone tools since
the reports generated by our environment are more
concise and provide a summarising overview of
keylogging actions per revision, per segment, per
task for each participant.

Web-based dedicated tools are tightly integrated
with the platform where the source and target con-
tent is created and published. An example of such
an environment is the wikiBABEL platform (Ku-
maran et al., 2008), which provides a user interface
and linguistic tools for collaborative correction of
the rough content by a community of users, thus
helping the creation of improved content in the

3https://www.taus.net/reports/lsps-in-
the-mt-loop-current-practices-future-
requirements
4http://try-and-see-mt.org/

target language. While the ACCEPT environment
also targets user communities, it is not dedicated to
a single community of users (such as Wikipedia).
As described in section 3, our environment is cur-
rently available by logging to a portal, but its archi-
tecture is sufficiently flexible that it could in theory
be used in any content management environment.

Web-based generic tools allow users to log on
to an online system to post-edit machine-translated
content. Examples of such environments in-
clude MateCat 5 and TransCenter (Denkowski and
Lavie, 2012). These tools allow translators to
log on to a web-based translation editor to view
sentences in a simple, easy-to-follow grid format.
Both tools allow project data to be exported in
HTML or comma separated value (CSV) format.
Our work differs from these environments with re-
spect to two main points: the ACCEPT environ-
ment is aimed at community users so a grid format
to display source and target texts does not seem
appropriate. As described in Section 4, our user
interface focuses on the target text. Our environ-
ment also supports the export of data in XLIFF
format instead of CSV format to maximise inter-
operability. Another tool that falls in this area is
CASMACAT, which is a sophisticated tool that
aims at investigating the integration of technology
in translation using logging and eye-tracking tech-
nology (Elming and Bonk, 2012). The ACCEPT
tool differs from CASMACAT in many aspects, in-
cluding the technology used for the client applica-
tion. While CASMACAT uses both HTML5 and
JavaScript in its client application, the ACCEPT
client application is written in JavaScript and uses
JQuery libraries.

Finally it is worth mentioning the Microsoft
Collaborative Translation Framework, 6 which is a
hybrid web-based method enabling specific users
to submit corrections and to retrieve translation
candidates.7 While this framework provides users
with the ability to retrieve contributed segments in
real time, it does not allow for any other informa-

5http://www.matecat.com/wp-content/
uploads/2013/01/MateCat-D4.1-V1.1_final.
pdf
6http://blogs.msdn.com/b/translation/
archive/2010/03/15/collaborative-
translations-announcing-the-next-
version-of-microsoft-translator-
technology-v2-apis-and-widget.aspx
7http://msdn.microsoft.com/en-us/library/
hh847650.aspx

120

tion related to the post-edited actions (such as post-
editing time) to be retrieved.

3 Design choices

Unlike other tools, the ACCEPT environment is di-
vided into four distinct parts: a database, a server-
side Application Programming Interface (API), a
Web-based application (portal) and a client appli-
cation where the actual post-editing work can be
performed. While the client application is also
Web-based, it differs from the Web-based portal
because it is written in JavaScript (using JQuery
libraries). This means that the client application
can be integrated into any third-party Web appli-
cation without requiring users to log on to the AC-
CEPT portal. This approach presents the advan-
tage of bringing users closer to the actual content
that should be post-edited.

The server-side API is used to create projects
and tasks and upload and download data thanks to
forms that are made available to specific users of
the Web-based portal, known as project adminis-
trators (i.e. users that have sufficient rights to cre-
ate projects). The API is also used to save any
post-editing action that takes place in the client
application. It is difficult to identify where ma-
chine translation fails from a post-editing perspec-
tive. By storing the post-editing actions (correc-
tions of machine translated output and UI interac-
tions) taken by multiple users in a central online
location (the database), weaknesses of the MT sys-
tems can be quickly identified, especially since this
information can be made available to project ad-
ministrators in real-time. A crucial characteristic
of the the ACCEPT environment is related to the
way user activity is recorded (e.g. time spent, keys
pressed): the recording is purely limited to what
happens within the client application. This means
that any activity performed outside of the ACCEPT
environment (e.g. looking up a word definition or
frequency using a search engine) will be ignored to
respect the user’s privacy. Further architecture and
data management details are provided in the next
sections.

3.1 Managing projects

The ACCEPT environment allows project ad-
ministrators to create and manage post-editing
projects. It is expected that project administrators
have some community management expertise or

responsibilities in order to create projects in which
their community members may be interested in
participating. It is the responsibility of the project
administrators to decide who to invite to work on
a project. The content that project administra-
tors may upload for post-editing may range from
short community contributions (such as forum or
blog posts) to longer organisation-related docu-
ments such as training material (say, produced by
a non-governmental organisation). Projects can be
created to collect user edits and to possibly study
those edits in detail thanks to the additional in-
formation that gets recorded during a post-editing
session (such as time spent, types of keys pressed,
etc.). This information can then be used by project
administrators to identify participants who have
contributed the most translations and/or the best
translation quality to a project with a view to re-
warding them using existing community rewarding
schemes. In order to cater for multiple post-editing
scenarios, the actual functionality of the client ap-
plication is defined during project creation. To pro-
vide project administrators with as much flexibility
as possible, the following interface configuration
options are available during project creation:

• How is the post-editing task going to be con-
ducted? In a monolingual or bilingual man-
ner? If it is conducted in a bilingual man-
ner, source segments may be viewed by users.
Otherwise, source segments may be hidden.
Default post-editing guidelines are also af-
fected by this choice. A specific setting al-
lows project administrators to decide whether
users can override this project-level configu-
ration (e.g. while a project may be config-
ured in a monolingual manner, users can still
view the source if they want to by clicking on
a switch).

• Should translation options be used during a
project? When this option is selected, alter-
native translation options provided by the MT
system may be displayed to users.

• Should a specific feedback question be ac-
tive? If so, which question/values should ap-
pear? When this field is used, the first option
appears as the title of a drop-down list, fol-
lowed by possible values. This allows project
administrators to elicit feedback from users

121

on various aspects of the tasks (e.g. quality
of the source, quality of the MT output, etc.)

• Should a post-task question be active? If so,
which question should appear? Should a post-
project link to a survey be present?

• What is the language pair of the project? If
the language pair is English >French, the
User Interface will be displayed in French.
Currently, the following User Interface and
project languages (i.e. languages in which
content can be post-edited) are supported, but
more could be easily added in the future: En-
glish, French and German. This selection also
influences the language resources used by the
spelling and grammar checker.

• Which user(s) should be invited to take part
in this project and what text should be used to
invite users to the project?

Once invited users have registered with the AC-
CEPT portal, they are presented with a list of tasks
to work on. Once these tasks are completed, they
disappear from their project page. Users can start
working on a task by clicking its task ID. Once
the task ID is clicked, the post-editing window ap-
pears based on the configuration that was speci-
fied by the project administrator. All user actions
are saved automatically (e.g. segment-level com-
ments, segment changes), but users are able to use
the Undo and Redo functionality when editing seg-
ments. Users can close the window even if a task
is not completed. This stops the global time count
until the window is opened again. A task can be
closed for good at any moment by the user (after
being prompted to confirm their choice).

Once a project is created, data that should be
post-edited by human reviewers can be imported
into the system, as described in the next section.

3.2 Uploading data
The data format that is currently supported is based
on a simple JSON format,8 which must contain the
following data:

• text id: a string corresponding to a unique
string identifier (e.g. hash value of the source
text). A file with a text id that is already in
use in a given project can not be uploaded.

8http://www.json.org/

• src sentences: an array of objects, which are
pairs of sentences, in the form: “text”: “sen-
tence” (where sentence is a string)

• tgt sentences: an array of objects, each con-
taining a sentence pair, in the form: “text”:
“sentence”. Each object may also contain an
optional options pair, in the form: “options”:
option array (where option array is an array
of objects). Each object in the option array
should contain a pair of tokens (in the form
“context”: “token”, where token corresponds
to a substring from a target sentence) and a
values pair which should contain an array of
objects. Each of these objects should con-
tain an alternative phrase pair, in the form
“phrase”: “token”.

The number of objects in src sentences must be
equal to the number of objects in tgt sentences.
The final JSON format may also contain metadata,
such as a contact email address, an MT tool name
and tool ID, a source language code and a target
language code.

The final JSON format may also contain an op-
tional tgt templates array to influence the display
of the target sentences in the post-editing window.
Templates were developed to define the layout of
the post-editing tasks and how they are displayed
in the editor. Standard DIV elements may be in-
cluded within the tgt templates array and each DIV
element may contain any CSS style information
within or around it. Each DIV corresponds to
one segment in the editor, which means that the
display of a paragraph can be defined individu-
ally. Each DIV element must include a @TAR-
GET@ sequence, which defines the position of
the respective target sentence in the target text.
The number of segments in tgt templates needs to
match the number of segments in src sentences
and in tgt sentences in order for the templates to
be mapped correctly to the segments to be edited.
To build a paragraph, for example, the sequence
style=“display:inline” can be included in front of
the placeholder for the actual segment. Special
characters must be encoded (e.g. < as %3Cdiv)
since the server only accepts characters inside the
ASCII character set.9 An example of such a DIV
is shown below:
9http://www.w3schools.com/tags/ref_
urlencode.asp

122

“tgt templates”: [{ “markup”: “%3Cdiv
style=\“display%3Ainline;\“%3E@TARGET@
%3C/div%3E%3E ” },
{ “markup”: ... }],

When no template is specified, the default be-
haviour is adopted and displayed, which means
that the post-editing task on the left of the editor
contains no paragraph. The default style for a DIV
is style=“display:block”.

3.3 Designing the client application

While the actual functionality available in the
client application is described in section 4,
the present section focuses on technical design
choices. When designing the client application of
the ACCEPT post-editing environment, the focus
was on developing a portable application purely
written in JavaScript instead of relying on a stan-
dard Web application. A standalone Web applica-
tion would have required users of an existing com-
munity to switch environments to perform post-
editing tasks. The jQuery library was selected to
build this portable application as a plug-in.10 This
library was selected because it is fast and widely
used. It also has useful utility functions, good doc-
umentation and a large community. It offers cross-
browser compatibility and full support for CSS3
selector specification. When it is used in conjunc-
tion with the jQuery UI library, CSS styles can be
inherited and easily changed. 11 The logic around
the technical aspect of the plug-in is based on col-
lecting information from an HTML DOM object
that self-configures the plug-in.

3.4 Recording post-editing actions

In order to assess whether MT or post-editing was
effective, analysing the actions performed or the
time spent by a given user on a given task may be
extremely informative. The ACCEPT environment
records actions and time in the following manner.

1. When a user clicks on any task link, the post-
editing window opens.

2. When the post-editing window opens, the
global time count for the task starts. This ac-
tion is captured in a phase called start pe.

10http://jquery.com/
11http://jqueryui.com/

3. When a user clicks on any segment in the tar-
get text (say, segment 1), the target segment
appears in the editing window.

4. When the user takes any action in the edit-
ing window, a time-stamp is recorded for the
first revision of the current segment. This ac-
tion is recorded in a phase called r1.1 (where
r stands for revision, 1 for segment 1, and 1
for revision 1).

5. The user now leaves the current segment, by
clicking on another segment (say segment 3),
and starts editing it. There is a new time-
stamp for this new segment, at revision 1.
Keystrokes are recorded again.

6. The user is not satisfied with segment 1, and
clicks on segment 1. There is a new time-
stamp for segment 1 at revision 2. Editing
actions are recorded.

7. The user clicks on segment 2. No further ac-
tions are taken by the user. No extra informa-
tion is recorded.

8. The user is satisfied with the result of this
task, clicks the Complete Task button, and
is asked to confirm. If the confirmation is
positive, the status for the document is FIN-
ISHED. In this case, the task disappears from
the overview page and the global time count
for the task stops. Otherwise, the status of
the task is UNFINISHED. In that case, the
task will still be displayed on the project page.
The global time count for the task stops until
the task is re-opened.

During the post-editing process, users often be-
have in unforeseen ways or come across unfore-
seen issues. In most existing solutions, user ac-
tions and interactions can only be investigated
once the post-editing process has been completed.
The ACCEPT environment provides instant access
to user progress, so that project administrators can
identify potential problems and solve them on the
spot without losing valuable time and data. This
real-time recording of the users’ progress facili-
tates a more efficient project management which
can also be used for rewarding users according to
their progress automatically. The next section fo-
cuses on the format of the report used to export
user activity.

123

3.5 Generating activity reports

Actions and interactions from multiple users are
collected and grouped together in real-time. A
standard format (XLIFF) is used for the export
of information, thus maximising interoperability.12

Figure 1 presents the mapping used to group a data
point (such as the number of arrow keys pressed in
a revision of a given segment) in an XLIFF count
element with a count-type attribute whose value
has a custom value, x-arrow-keys.

As shown in Table 1, multiple XLIFF elements
are used to represent post-editing activity data.
The actual target text entered by a user when mod-
ifying a machine-translated segment is present in
the body element in target elements of trans-unit
elements. Each revision is saved as a distinct phase
labeled with a unique phase-name attribute. This
attribute value can then be cross-referenced with
a count element and a phase element that have
the same attribute value. These count and phase
elements contain metadata information about the
activity performed by the user. For instance, the
number of arrow keys pressed or any comment the
user may have made on the quality of the original
machine-translated segment can be represented us-
ing these elements.

Project administrators can then export post-
editing activity data at the user-, document- or
project -level by generating XLIFF files, such as
the one shown in Figure 1:

Figure 1 shows the activity one user performed
on one task. A task is mapped to an XLIFF file
element, which contains a header element and a
body element. The body element is used to capture
all of the texts that were used and produced during
the post-editing process, including the source text,
the original machine-translated text and any revi-
sion that may have been produced. The header el-
ement contains detailed information on the actual
actions that occurred during the post-editing pro-
cess (e.g. types of keys being pressed, number of
times the text checker was used, alternative options
used, etc.).

4 Client Functionality

The guiding principle followed when selecting
functionality for the plug-in was that the user in-

12http://docs.oasis-open.org/xliff/xliff-
core/xliff-core.html

Figure 1: Report in XLIFF format

terface should be as simple as possible, using few
but well-known button icons. One of the first ques-
tions we had to answer when creating the plug-in
was how the text should be displayed to users. It
was felt that displaying text in a grid format would
be intimidating to non-professional translators. In-
stead, we decided to present the whole target text
to edit in a column (left), thus giving users the abil-
ity to navigate from one sentence to another by
clicking on individual sentences. The editing takes
place in a separate column (right), segment by seg-
ment, as shown in Figure 2:

Figure 2: Client application

Figure 2 shows that the ACCEPT plug-in is tar-
get text-driven since the objective of the task is to
post-edit pre-translated content. Users are invited
to make edits to an existing target text rather than
creating a target text from scratch by getting some

124

Description XLIFF count Type Unit Level Example
Total time (active editing
window)

x-total-time (in phase-
name=”complete pe”)

Seconds Task

Total editing time
(all revision-level editing
times)

x-editing-time (in phase-
name=”complete pe”)

Seconds Task

Number of keys pressed x-keys Instance Revision
Number of space keys
pressed

x-white-keys Instance Revision

Number of alphanumeri-
cal and non-white keys
pressed

x-nonwhite-keys Instance Revision a,J,{

Number of arrow keys
pressed

x-arrow-keys Instance Revision ↑,←, End,Home

Number of other keys
pressed

x-other-keys Instance Revision CTRL,Shift

Number of triggered
checks

x-checking-usage Instance Revision

Selection of alternative
translation options

x-trans-options-usage Instance Revision

Time spent editing x-editing-time Seconds Revision
Description XLIFF Mapping Type Level Example
Used Translation Options note annotates=”target”

from=”trans options”
String Revision Hat |||Ist |||0

Generic Comment note annotates=”general”
from=”user”

String Revision Easy to edit!

Custom Comment note annotates=”target”
from=”user”

String Revision Terminology

Text entered target of alt-trans if not fi-
nal or target of trans-unit if
final

String Revision Ist jemandem das schon mal begegnet?

Global Comment note annotates=”general” String Task Easy!

Table 1: XLIFF elements used to display PE actions

inspiration from a source text. This choice is mo-
tivated by the fact that target users of this applica-
tion are members of a community who may have a
very limited knowledge of the source language. To
fully support this use case, the user interface of the
plug-in has already been fully localised from En-
glish into French and German, and more languages
will be easily added in the future.

4.1 Displaying alternative translation options

The best output of an MT system (especially the
output of an SMT system) corresponds to a product
of choices between multiple options, but some of
these options sometimes turn out to be sub-optimal
in a given context. While experienced post-editors
can easily correct these poor choices by select-
ing more suitable morphological, lexical or syn-
tactic options without being prompted, it has been
shown that lesser-equipped translators can benefit
from having access to alternative translation op-
tions (Koehn, 2010). As described in section 3,

the JSON format used to upload data into a given
project may contain such alternative options. The
ACCEPT plug-in currently expects each alterna-
tive translation option to be present in an array
associated with each target token. Once a token
has been identified by a user (by hovering over
it and clicking it), its alternative options are dis-
played in a contextual list, where each item can
be selected in order to replace the original token
in the target text. The use of this functionality is
recorded in the XLIFF report using a count ele-
ment with a count-type attribute whose value is x-
trans-options-usage. The options that were actu-
ally selected by the user are recorded in note ele-
ments.

4.2 Checking Target Content

The output of MT systems is sometimes ungram-
matical, so users may benefit from some assistance
to identify those parts of the output that should be
modified. Spelling and grammar checking is there-

125

fore made available by embedding a pre-editing
plug-in in the post-editing plug-in itself. This func-
tionality can be triggered by clicking the ABC icon.
Once this icon is clicked, a pop-up window appears
and misspelt words or ungrammatical phrases are
underlined. The user can then select a sugges-
tion or ignore the recommendation provided by the
tool. Supported languages currently include En-
glish, French and German. It is currently not clear
how useful the default rules are for checking MT
output, but they can also be used once the MT out-
put has been post-edited. The use of this function-
ality is recorded in the XLIFF report using a count
element with a count-type attribute whose value is
x-checking-usage.

4.3 Showing the source

Post-editing is traditionally believed to be most
successful in a bilingual manner (i.e. post-editing
with reference to the source text) for the reason
that meaning that may have been lost/distorted in
the machine translation process can be retrieved
from the source text. While research in monolin-
gual post-editing is scarce, especially in regards
to domain experts as post-editors rather than lin-
guists/translators, providing the post-editor with
the opportunity of choosing the post-editing set-
up dynamically (i.e. monolingual/bilingual) has
been identified as a potential way of minimising or
preventing user frustration. This is supported by
feedback that has been gathered in internal stud-
ies, which indicated that users were eager to see
the source, as further described in Section 5.

To illustrate switching between bilingual and
monolingual modes, consider what happens if the
project default is the monolingual mode. The
source will then not be shown in the interface when
a task is opened initially. The user can then de-
cide to switch to being shown the original segment
for the current segment. Regardless of how many
switches are performed per segment, the last state
the switch is in is retained for the next segment a
user chooses to edit. It can be switched at any time.
When the editor is closed, the page is refreshed or
a new task is selected, the project default is dis-
played again (in this case the source is not shown).

5 Evaluation

A pilot study with 8 participants was recently con-
ducted with a view to analyse the types of ed-

its made by volunteer post-editors (most of whom
were forum users with no formal translation or
post-editing experience). During this study, we
found that the interface was not straight-forward
to use because it differed from editors users were
familiar with (e.g. MS Word). This resulted in
users copying and pasting content into other edi-
tors or editing all content in one segment. In addi-
tion, the help button was not visible enough and the
instructions were not clear enough. These issues
were addressed by making the help button more
visible and by creating a short training video for
future users, consisting of a screen recording and
a voice-over in the participants’ native language.
Since these improvements have been made, a new
study has been conducted with 18 participants (five
of whom had translation experience), and it has re-
vealed that there is no longer any confusion on how
to use the interface. We also took this opportunity
to ask users three specific questions about the in-
terface:

• Which feature did you like best?

• Which feature did you like least?

• Which feature did you miss most?

The results presented in Table 2 show that
most users were satisfied with the feature set of
the ACCEPT environment. When asked to iden-
tify the feature they liked least, half of the re-
spondents answered ”None”, suggesting that ev-
erything was working as expecting. Based on the
feedback received, areas to improve include a more
comfortable display of the target text (without any
scrolling) and the ability to have access to the
whole source text.

The lukewarm feedback received in relation to
the spell-checking feature confirms the need to use
a tool that has been specifically designed with ma-
chine translation output and post-editing in mind.
Traditional spelling and grammar checkers are
usually not trained on machine translation output,
so they can generate false alarms when used in a
post-editing context. Some of the enhancement
suggestions also reveal that experienced users (e.g.
people with translation expertise) are interested in
having access to features found in existing transla-
tion environments (such as advanced editing tools
or online dictionaries). It is also worth highlight-
ing two other user suggestions: having to ability to

126

Best % Worst % Missed %
Show source 77.8 None 50 None 50
All 11.2 Spell checker 27.8 Dictionary/thesaurus/alternative

translations
10

Yellow text highlighting 5.5 “Next” button 11.2 Show whole source text 5
Whole text on left side 5.5 Small fonts 5.5 No scrolling 5

Vanishing tasks 5.5 Show how others have translated this 5
Revert to MT segment 5
Use proofreading symbols 5
Show editing tool as menu bar 5
Display statistics and badges 5
Have another window for draft sen-
tences

5

Table 2: Usability survey results

revert to the original MT output and being able to
see how other users may have post-edited the same
segment.

6 Conclusions and future work

This paper has presented a simple, yet powerful,
novel post-editing environment aimed at commu-
nity users who may have very limited translation
expertise. We described the architectural design
choices that were made to create a flexible envi-
ronment that clearly segregates the client applica-
tion from the rest of the environment. User actions
and interactions that take place in the client appli-
cation are captured via the ACCEPT API, stored
in a database, and made available in real-time to
project administrators via a downloadable report
based on the XLIFF format. Future work will fo-
cus on documenting the API of the ACCEPT envi-
ronment, so that post-editing tasks can be created
easily, without necessarily having to upload input
files manually. An extension of this work will also
include necessary changes to allow the use of the
client application outside of the ACCEPT portal.
We have already made some progress in this area
by allowing certain users to make use of the AC-
CEPT client application inside Amazon Mechan-
ical Turk’ HITs.13 We will also investigate the
possibility to integrate functionality provided by
advanced (S)MT systems, such as the mining of
complete search graphs to display useful alterna-
tive translation options. Finally, we would also like
13https://www.mturk.com

to conduct an evaluation comparing the usage of
this environment with the usage of another exist-
ing tool to benchmark how long post-editing takes
in each environment.

Acknowledgements

The work presented in this paper is being sup-
ported by the European Commission’s Seventh
Framework Programme (Grant 288769). The au-
thors would like to thank Fred Hollowood and
Jason Rickard for their insights during the ini-
tial design phase, all of the users of the ACCEPT
post-editing environment who have provided some
feedback to date, as well as the reviewers of this
paper for their comments.

References

Wilker Aziz, Sheila Castilho, and Lucia Spe-
cia. PET: a Tool for Post-editing and As-
sessing Machine Translation. In Nicoletta
Calzolari, Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph
Mariani, Jan Odijk, and Stelios Piperidis, edi-
tors, LREC, pages 3982–3987. European Lan-
guage Resources Association (ELRA), 2012.

Michael Carl. Translog-II: a Program for Record-
ing User Activity Data for Empirical Reading
and Writing Research. In LREC, pages 4108–
4112, 2012.

Giselle de Almeida and Sharon O’Brien.
Analysing Post-Editing Performance: Cor-

127

relations with Years of Translation Experience.
In François Yvon and Viggo Hansen, editors,
EAMT 2010, 14th Annual Conference of the
European Association for Machine Translation,
Saint-Raphaël, France, 2010.

Michael Denkowski and Alon Lavie. TransCen-
ter: Web-Based Translation Research Suite. In
AMTA Workshop on Post-Editing Technology
and Practice Demo Session, San Diego, CA,
2012.

Jakob Elming and Ragnar Bonk. The CAS-
MACAT workbench: a tool for investigating
the integration of technology in translation. In
Proceedings of the International Workshop on
Expertise in Translation and Post-editing - Re-
search and Application, Copenhagen, Denmark,
2012.

Raymond Flournoy and Christine Duran. Machine
Translation and Document Localization Produc-
tion at Adobe: From Pilot to Production. In MT
Summit XII: proceedings of the twelfth Machine
Translation Summit, 2009.

Spence Green, Jeffrey Heer, and Christopher D
Manning. The efficacy of human post-editing
for language translation. In Proceedings of the
SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’13, pages 439–448, New
York, NY, USA, 2013. ACM.

Ana Guerberof Arenas. Productivity and quality
in the post-editing of outputs from translation
memories and machine translation. PhD thesis,
Universitat Rovira i Virgili, Spain, 2012.

Philipp Koehn. Enabling Monolingual Translators:
Post-Editing vs. Options. In Proceedings of Hu-
man Language Technologies: The 2010 Annual
Conference of the North American Chapter of
the Association for Computational Linguistics,
pages 537–545, Los Angeles, California, 2010.

A Kumaran, K Saravanan, and Sandor Maurice.
wikiBABEL: community creation of multilin-
gual data. In Proceedings of the 4th Interna-
tional Symposium on Wikis, WikiSym ’08, pages
14:1—-14:11, New York, NY, USA, 2008.
ACM.

Linda Mitchell and Johann Roturier. Evaluation
of Machine-Translated User Generated Content
: A pilot study based on User Ratings. In Pro-

ceedings of EAMT 2012, pages 61–64, Trento,
Italy, 2012.

Mirko Plitt and François Masselot. A Produc-
tivity Test of Statistical Machine Translation
Post-Editing in a Typical Localisation Context.
Prague Bull. Math. Linguistics, 93:7–16, 2010.

Johann Roturier and Anthony Bensadoun. Evalua-
tion of MT Systems to Translate User Generated
Content. In Proceedings of the Thirteenth Ma-
chine Translation Summit, pages 244–251, Xia-
men, China, 2011.

128

